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CONVEX DUALITY APPROACH X
TO THE OPTIMAL CONTROL OF DIFFUSIONS

! '
§§ WENDELL H. FLEMINGT AND DOMOKOS VERMES} '
,:,
0 1. INTRODUCTION '
We consider R"-valued diffusion processes governed by the stochastic differential equu-
' tion )
¢
;, dry = b(s xs.us)ds + o(s, 24, u,)dws, Ty =71 (1.1
: with w, an R"-valued Brownian motion and u, a non-anticipative Y CC R"-valued control
n process. The objective is to minimize the expected (possibly discounted) cost '
. T ;
:: JU(t,z) = E;‘,I/t e eu) (s 2, u,)ds (1.2) t
v
> over all control processes u. Here T is a finite or infinite planning horizon. Additional
o terminal costs could also be included. g
:: An important feature of the present paper is that we do not make any ellipticity assump- )
é: tion, the matrix o can be degenerate or even identically zero. This means the approach
¢ . covers both deterministic and stochastic control theory.
Another specialty is that the running cost (and terminal cost if present) is not required
o . to be bounded or continuous, merely lower semi-continuous and of polynomial growth.
: This makes it possible, among other things to include also problems where the objective
é is e.g. to minimize the probability of the event that the state ever leaves a closed subset
o of the state space or to maximize the hitting probability of a target set; and in particular \
to cover the fixed end-point problem of deterministic control theory.
kX In distinction from most papers in the field, the present approach does not use dynamic A
! programming but is based on duality of convex analysis. We embed our control problem ‘
:' into a convex mathematical programming problem on a space of measures and consider
4 its dual which turns out to involve the Hamilton-Jacobi-Bellman (HJB) equation. More :

precisely we find that the dual of the original minimization problem is to seek the supremum

of all smooth subsolutions of the Hamilton-Jacobi-Bellman equation. From the existence
$ of an equilibrium point for the primal-dual game it then follows, in particular, that the !
' optimal value function is the upper envelope of the smooth subsolutions of the Hamiltou-
Jacobi-Bellman equation.

7 *This researchi was supported in part by the Institute for Mathematics and its Applications with fund-
provided by the NSF and Office of Naval Research.

t Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912. Partially sup-
ported by NSF under grant MCS-8121940. by ONR under contract N00014-83-K0542 and by AFOSR

. under contracts F-49620-86-C-0111 and AFOSR-85-0315. )
’ 1 Department of Mathematics, University of Washington, Seattle, Washington 98195. (On leave from tli

’ University of Szeged.) This research was launched while the second author visited the Lefschetz Centcr

:: for Dynamical Systems and later it was supported in part by NSF grant DMS-8701768.
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The proof consists of two major steps. First we construct the minimization problem
on the space of measures which contains the original control problem embedded (£3 1 aud
apply the Fenchel-Rockafellar duality theorem [4] to arrive at the HIB equation (§4). lu
the sccond step we prove that the embedding is actually tight: the infimum is the sazic
both in the original and in the extended problem (§§5-6). This second part of the proof
is based on the separation theorem and uses some analytic tools like mollification and
Sobolev estimates, which in turn are derived by control-theoretic arguments. Roughly one
could say that the separation is carried out by a sufficiently smooth control problem.

The usefulness of the duality theorem in control theory was first demonstrated by Vinter
and Lewis [6], [7] who proved similar results for deterministic control problems. Thei
approach was made available for stochastic control problems in [5] by basing it ou thc
theory of occupation (potential and harmonic) measures and infinitesimal operators. The
present paper extends the method to the optimal control of diffusions. Since the diffusion
matrix is allowed to degenerate, the presented results apply uniformly to both determiuistic
and stochastic control problems. The novel proof of the tightness of the embedding is not
only more general but even in the classical deterministic case it is more direct than the
arguments of (6].

In {3] Lions characterizes the optimal value function of stochastic control as the largest
generalized subsolution of the Hamilton-Jacobi-Bellman equation. The approach and
method of proof differs from the one followed here.

2. FORMULATION OF THE PROBLEM

Let T be the planning horizon, either a non-negative number or +o0c. We take 0 <
t <T. If T < oc then the state space will be E° := [0,7] x R" and if T = 400 then
E® :=[0,T) x R". We denote by E the one-point compactification of E and introduce
the notation S := E° x Y and S := E x Y. Note that E and S are compact.

The coefficients o(t,z,y) and b(t,z,y) as well as the discount rate ¢(t,z,y) > 0 arc
assumed to be bounded continuous functions on S° such that their first partial derivatives
with respect to t and second partial derivatives with respect to z exist and, together with
the functions themselves can continuously be extended to S. The running cost [ is assumed
to be lower semi-continuous on S and of at most polynomial growth. The case of additional
terminal costs will be considered in §8.

For simplicity we assume that either the planning horizon T is finite or that there is
a strict discounting. i.e. ¢o = inf,eg0c(c) > 0. The effect of the discounting will he
included into the process as an exponential killing or a jump to the fictitious isolated
cemetery state A at the killing time ©. In what follows all expectation signs E will refer
to the killed process. The only exception is the sans serif E in formula (1.2) which denotes
the expectation of the non-killed process, 1.e.

.
E®(z,) = E®(z,) l{ozr) = Ecp(x,)/ e=c(z0u) g,
t

We will also use the notation 7 := min(©.T) and refer to it as the life-time of the
processes. The cost J* can then be expressed in the three equivalent forms
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JU(t.x) = E;‘.,/ e—c(s’r"“‘)l(s‘z,,us)ds
t

r T
W = E,“,I/ [(s,z4,us)ds = E,",/ l(s,z4,u,)ds. (1.2") |
t t

‘. The assumptions about the boundedness of the coefficients, growth of the costs, and
boundedness of the expected life-time can be substantially relaxed. In fact, the proofs usc

a much less stringent but also less explicit assumption; c.f. the remark following Lemmaz ,
2.1. ‘
; The spaces of functions on §° and E° which are continuously extendable to S and E .
‘ will be denoted by C(S) and C(E) respectively and they are considered to be Banacl:

. spaces normed by the supremum norm. In Lemma 2.1 we will introduce a continuous

" positive weight function 4 : [0,T) x R"® — (0,00) associated with the control problem

under investigation. We will consider the weighted spaces

-
-’ﬂ-

C.(S):={f€C(5%): f/reC(S), |fl,:= e If(&,9)1/2(€) < o<

;' €EE,yeY r
- and Kl‘iinx!f(ﬁ,y)l/‘r(ﬁ) =0}, !
A :

C,(F) is defined analogously.

)
: ,
::: C2(E):={® € C(E) : ®(T,z)/v(T,z) =0, &, ®,,,®:,z;, € Cr(E)V i,j=1,... n}. )
[ t
: In the subsequent expositions C2 can always be substituted by the set of all infinitely
. often differentiable functions satisfying the boundary condition ®(T,z)/y(T,z) = 0 and .
“ with all derivatives in C,(E). We will refer to the elements of C2 as smooth functions. ;
MZ(S) will denote the space of all signed Borel measures M on S° for which the norm
) |IM]. = [~vdM* + [4dM~ is finite. Here MY and M~ are the positive and negative

parts of the Jordan decomposition of Af. With obvious identification elements of M1(S)
& can be considered as signed measures on S not assigning mass to {oo} x Y. :
. If T is a positive constant then M™!(S) will denote those non-negative measures from )
13 M1(S) for which ||M]l, < T < +o0. !
N The set U of all admissible controls consists of all Y -valued control processes u, which are !
) progressively measurable with respect to the filtration of the Brownian motion w,. If u € U/
' then r¥ denotes the solution of the stochastic differential equation (1.1) corresponding to

u, satisfying the initial condition z§ = z and killed at rate ¢(-). The corresponding ‘f
" expectation operator will be denoted by EY, and if no confusion can arise the superscript {
Ks u will be omitted from 7 inside the expectation. )

With each coutiol v € U we associate the measure M" defined on the compact space '

N S = E x Y which is the extension of

R R D ST A S A M o 0 S 2 A 2
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AI“(B:XB,XB”::E:‘,Z/ 1p,(z3)- 1B, (us)ds Y

[t.T)NB,

‘ M(oc xY):=0. (2.1 »

;

! Here B, C [0,00), B C R", By, C Y are arbitrary Borel sets and 1p denotes the :E
indicator function of the set B. Note that though the notation does not indicate it. the '

measures M*" depend on the initial condition r, = z in (1.1) which is considered to be

: fixed. We will denote the set of all such M* corresponding to some u € U by M>(t, ). 2
4 Intuitively, M ([t.t'] x B, x By) measures the expected time before t' spent by the killed )
1 process x§ in the set B, while control values from B, C Y were supplied. In particular. 3

M*(-,-,Y) is the potential (or occupation) measure of the killed time-space process (s, r?). h

The infinitesimal operator of the killed Markov process 2} corresponding to the constant
control u; = y € Y is defined for each ® € C?(E?) and is given by the expression

: 4
: :
' "
' 0%(t.x 9%*(t,x 0<I> t,x y
: AYD(t,7) = ( o27) 4 Z @i 5(t, 2, y) 5—== ( ) + Zb (t,z ( IUET) _ oft,2,9)8(1,2) 2
£,5=1 1
' v
: with (a;;) = %G’T - 0. We will use this notation also for non-smooth functions @ i.c. to 1
! denote the value of the expression on the right-hand side at every point (¢,z) where the o
[ corresponding partial derivatives exist. y
To interconnect the assumptions on discounting, termination and growth as well as to ;
¢ express them in a technically convenient analytic form we prove the following -
& s
p LEMMA 2.1. There exist constants 0 < a < & and a twice continuously differentiable
: function v : [0.T) x R™ — (0, c0) satisfying :
-. 0<ay<-4%vy<ay (2.2) ]
; evervwhere in (0,T) x R" forally € Y. -
‘: Proor: We will construct 4 separately for the discounted and for the finite horizon case. ‘
1.) Discounted case. The infinitesimal operator of the exponentially killed process is of ’
the form A® = D® —c® with D a (possibly degenerate) second order differential operator. o
We define ?
; " ;
p v(t,z) = (coshpt)Hcoshpx,- (2.3) ('
=1
) with a p yet to be determined approximately. N
( A straightforward calculation shows that :
| ’
~K(p)r(t.7) < D~(t,z) < K(p)y(t.z) (2.4) A
: with K(p) = 320, [laij1p? + i, 1bi]lp = @p? + bp. Consequently 3
D .
: 4 '
|

I S Rt
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KNp)+iel-vS4y=Dy~c-y <(K(p)—c)-n. (2.5

If co = inf e > 0 then the quadratic equation ap? + bp ~ ¢y = 0 has exactly one positive
. root po. Choosing p from the interval (0,py) we get that ¢ — A'(p) > 0. hence (2.2) i<
. satisfied with a := ¢y — N'(p) and a := ||| + K (p).
2. Finite horizon case. We define

n

2tx)y:=1+(T-1)]- Hcoshp.r, =[14 (T — t)]ro(x).

=1 {

Using the notation A® = 8¢, 0t + D, ® a calculation analogous to that of the discountc!
case yields

—Ar(t.2) =10(2) = (1+T —t)D,1(z) 2[(1 +T=1)"' = K(p)] - (1+T —t) - 70(). (2.6)

With (1 + T)~?! in place of ¢q, the above argument shows that if p is chosen from (0.p,)
then ~ satisfies (2.2) witha := (14 T)™! — K(p) > 0 and a := 1+ K(p). The proof of the
~ lemma is complete.

We formulate some consequences of Lemma 2.1 which will be used at various places
during the subsequent expositions.

0 COROLLARY.

A (1) fvdAMY < A(t,2)/a < +oc for every MY € M3(t,z). In other words, the constant

3 . . .

v:: I':= ~(t.7)/a < 4 is a uniform upper bound for the expressions E}, LT y(s.x%¥)ds for

:. every process xry generated by a control u € Y and starting from initial state r, = r.

:: (2) ~(t.x) grows asvmptoticallv not faster than an exponential function as |r] — oc. )
- t— .

(3) For every (t,z) € E', 0<s < 400 and u € U we have

1—e @ <1 =271t 2)Ef v(t+ 5, 7e4s) < 1. (2.7) ‘

& PRrooOF:
(1) follows from Dynkin's formula. In fact, if T < oo we have

. 1 T
1 /7(1‘\1“ < i—/(—-“v)df\f" = '&Etu,z/ (—A%y)(s.25)ds
. t

. 1
v = E[‘,(f.l‘)—E:“I')(T,‘TT)] S‘)(fT)/O.

Since the bound is independent of T. the inequality remains true as T — +oc.
(2) is immediate from the constiruction of 4 in the proof of Lemma 2.1.

(3) The left-hand side of (2.2} can be written as A¥y + ay < 0. By the Fiyuman - Kac
formula it follows that E' e®*y(t + s,7{4,) < 7(t,z) with an a > 0. Subtracting both

5
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sides of inequality EF A(t+s,28,,) < e7%°4(t. 1) from 4(t,x) gives y — E4 > (1~ 77
whichi proves the left-hand side of (2.7). The right-hand side is trivial since ~~'E- > 0.

Remark. The growth, discounting and termination conditions required earlier in this
section will be used in the subsequent expositions only indirectly through the statement
of Lemmua 2.1. Consequently all results of this paper remain valid under other scts o
assumptions whicli assure the existence of a 4 with property (2.2). Examples of otlic:
possible sets of such assumptions are

(1) Caeflicients a;;. b, satisfy linear growth conditions, the discounting is strict, the run-
ning cost is bounded. In this case 4 can be chosen asymptotically as |z with p < C and
a = Co bl /B

(ii) Cocfficients a;j, b; satisfy linear growth conditions, the time horizon is finite. the
running cost is of polynomial growth. Then one can choose ~(t,z) ~ [1 + K(T — t)}|z|"
with an appropriate K and p.

Now we return to our original control problem. Although we assumed ! to be only lowr
semi-continuous, in §§3-6 of the paper we will consider continuous running costs. The
extension of all obtained results to the general semi-continuous case will be an additional
step in §7. With the notation introduced the control problem we will consider is §§3-6 can
be formulated as the

Strong Problem. For a given running cost [ € C,(E) and initial state (t,r)€ E°

minimize /ld.M" over all M" e M5(t,1).

We can defitue the optimal value ¢ of the strong problem as a function of the initial state

Y(t,z) = inf{/ldﬂf“ MY € Ms(t,x)}.

3. THE WEAK FORMULATION OF THE CONTROL PROBLEM

It follows from Ito’s formula, that for arbitrary non-anticipative control process u € I{
the gencralization of the fundamental theorem of calculus (Dynkin’s formula) holds truc.
For every twice continuously differentiable ¢ we have

o
. 2(0,20) — ®(t,r) = E/, / AV d(s,z,)ds (3.1)
¢
provided o < 7 is a stopping time such that the expectations exist.
If we apply this formula to the terminal time 7 and to smooth functions ¢ € (2 whicl

vanish at the terminal state A then by &(r,z,) = ®(A) = 0 we find that

6
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8
’.:; -®(t.x) = /_4”<I>(t',:r’);’\1"(dt'.d.r'.dy) (3.2,
w
» Liolds true for every v € {{ whenever A® € (.
::: We introduce the notations
Q.
" Myt a) = {Me MLI(S):-%(t.2)= /A@ dM forall ®¢ CZ(E)}
ht and
!
*% MWt z):= MIT(S)N Myu(t,x) with T =4t z)/a.
¥ Since for every u € M the measure M* € M3(t,z) is in both MYT(S) and M 4(t. 1)
our original control problem. the “Strong Problem™ is embedded in the following
0
k) .
- Weak Problem  Minimize / 1dM  over Me Mt ) (3.3)
[}
Iy This is a minimization problem on the space of measures with linear objective and
convex constraints. In fact if [ € C,(S) then by Riesz’ theorem [[d} is a continuous
H linear functional on the space of signed measures M3. For each ¢ € C2? relation (3.2)
o imposes a continuous linear restriction on M, consequently their intersection M 4(¢. 1) is
LI a closed linear sct in M}. Finally M is a w*-compact convex subset of M}.
K The feasible set of the strong problem consists of all M* € M S generated by a control
] u € Y via the stochastic differential equation (1.1). This set is contained in the feasible set
By - MW of the weak problem, thus the optimal value ¢(t,z) := inf{f{dM* : u € U} is not
:’; less than the minimum W(t,z) = inf{ [ IdM;M € M"(t,2)} in the weak problem. Note
; that the initial state (¢,z) is invol''ed in the strong problem through the initial condition
(1.2) and in the weaki problem through the definition of M 4(t, 7).
. In what follows, we will first characterize the value function ¥(t, ) of the weak problem
\ by solving its dual, a maximization problem in the function space C,(E) C C,(S). More
P precisely it will turn out that the dual of the minimization problem (3.3) is to find the
) j supremum of all smooth subsolutions to the Hamilton-Jacobi equation.
N To make duality methods applicable it is convenient to bring the weak problem to
the Fenchel normalform. Using extended valued functions we reformulate the convexly
8 constrained lincar problem as an unconstrained convex problem. In fact, we introduce the
) functionals h, and hy : ML(S) — R by
\
g k() fldr if M e MYT(S)
) A= +00 otherwise
0 if M € Mu(t,z)
{ ha(M): = { .
" —o0 otherwise.
15
Both iy and =, arc convex and lower semi-continuous. It 1s immediate that the weak
:‘.‘ problem is equivalent to the following
s
w 7
" i
i
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n::
e, &
‘Tt Fenchel Problem Minimize Jiy(M) — ho(M overall M e ML(S.
at‘
v.:;
o
::" 4. DUALITY AND THE HAMILTON-JACOBI PROBLEM
‘v 8
f".a, Recall that the space S is compact, thus by Riesz” theorem C3(S) = MZL(S). In other
oy words C.(S) and .M1(S) are spaces in duality connected by the bilinear form.
1
0
Y
e (¢.11)=/¢d/1 deCy. peMl (4.1,
o
! The norm topology of C., and the weak*- topology of M7 are compatible with the pairing.
. the coutinuous linear functionals on both spaces are exactly those representable by the
3:' bilinear form. If H and k are convex real-valued functions defined on C,(S) and M} (S)
%:'.i respectively then their Legendre-Fer.chel transforms (convex conjugates) are defined by
W
3
) H*(p) = sup{/Q’dy—H(é):g‘)EC-,(S)} (4.2)
o
2 w(8) = sup{ [ odu = hiu) : s € ML(S)}, (4.3)
)
‘ If the original function h or H was convex and lower semi-continuous then it coincides
S, with its double conjugate, i.e. H** = H, h** = h. Conjugates of concave functions arc
» dcfined analogously but with inf in place of sup, and have the corresponding properties.
. Now we compute the Legendre-Fenchel transforms of the functionals h; and h,. We use
‘-‘» the quantitics =~ and a as they were introduced in Lemma 2.1.
. LEMMA (4.1). £{(8) = a™t -4(t,2) - (6 = D lly = a™F - (t,2)
:,:‘. -sup{[d(c) — U(0))/~(8,€) : over all 0 = (6,&,n) € S such that $(o) — (o) > 0}.1
: PROOF:
Y
M)
L hi(¢) = sup{/[qﬁdy —hi(u):pn € Ml} = sup{/(¢ —U0)dM: M€ M"‘r}
% =sup{/[(¢—1)/’)]‘) dM : M >0, / dﬁ!Squ(t,r)/a}. (4.4)
r: B
é Since ¢ and [ arc iu C,, the continuous function (¢—1)/~ attains its maximum at somec poiut
\» oo = (to.To,yo) of the compact set S. If (¢ —1)(to, z0,y0)/7(to,zo) > 0 then ty < 00, 79 #
N oo and the sup in (3.4) can be attained by concentrating all available mass of the measure
3 ! 4 dM to the point 0g € S. We have to choose M(ds) := (¢, x)/(a - v(to.70))é0, (ds) with !
o és, denoting the Dirac measure assigning unit mass to the singleton {o¢}. Then we have '
::' $(f)* denotes the positive part of the function f, i.e. ft(z) = max{0. f(r)}
& ]
K 8
W, .
,
b
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Ri(c) = ait.2 o — Do)/ (a -4(to,z0)) = a™ ! -t a)||(6 = D, (4.0

provided sup(é — 1) > 0.
If sup(o — 1) < 0.1.e. if §(c) < (o) for all ¢ € S, then the maximum of the expression
(4.4) is zero and i attained for M = 0. This together with (4.5) proves the lemma.

LEMMA (4.2).

(4.6)

—o0 otherwise.

(6) { —lim®;(t.x) if ¢ =lim;_. o AD, with ®, € C.f(E).
200) =

PROOF: Sincc /2 is concave, h3(0) 1= inf{ [ ¢ dM — hy(M) : M € M4(t.z)}.

Let us first assume that ¢ = AP € C, with some ¢ € 02 Then, by the definition
of M(t.x) for every M € My(t,z) we have [ddAf = fA<I> dM = —-&(t,r). Since
M4 is non-eupty. A®; = A®, implies ®,(¢,z) = ®2(¢,x) and hence we have [¢dl)/ =
[ AD dA = —&it.x) whenever ¢ = AP € C, with some ¢ € C'?,.

Let us assumc now that there exists a sequence $* € C2 such that |jo — A2*|/, — 0.
This means that 4¢%/y — ¢/4 uniformly on S as k¥ — co. By this uniform convergence
and the finiteness of the measure 4 dAM for every M € M4(t,z) C M1 we have

/¢du_/— ~dM —/khm T v dM = j lim A®* dM = lim &%(¢, 7)

independently of the particular choice of the sequence A®*. Since —lim ®*(¢. ) does not
depend on M ¢ .M 4(t. 7). we have proved the first line of (4.6).

It remains to show that A5(¢) = —oo if ¢ is not in the || ||y closure of the functions
A® with @ € C2. Assume &g € C, is not in the closed subspace W := {3 € C,(S)
limg oo o — AP |, = 0 with ®* € C2}. Then ¢; and W can be separated by a closed

hyperplane. Le. there exists an M' € M1(S) such that ) ¢odM’' < 0 while [¢dM' =0
for all ¢ € 1. In particular we have [ A®dM’' = 0 for all & € C? and consequently

M + OM' € Mu(t,z) for every M € M4(t,z) and © € R!. If M denotes an arbitrary
fixed element of M 4(t.7) then we have

h3(og) = Mmf /00 dM < O}glgl / ¢ d(M + OM")

EM4

==/d)gd7\7+ inf O-/égdﬂf'=—
OcR!

Here we used that by assumption [ ¢o dA' # 0 and that 6 can be arbitrary. This completes
the proof of the lemma.

The next theorem is the main result of this section. Roughly it states that seeking the
maximal solution of the Hamilton-Jacobi- Bellman equation is the dual to the weak problem
formulated in the previous section. As under the current weak assumptions no smooth

9
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solutions to the Hamilton-Jacobi-Bellman equation need exist, the precise formulation of
the duality relationship is the following. The value function (i.e. the minimum) of the
weak problem is the upper envelope (i.e. supremum) of the smooth subsolutions of tl.
Hamilton-Jacobi equation.

THEOREM 1.

U(t,z):= min{/ld.\f M€ MA(t,.r)ﬂM"’r}
=sup{®(t,z): ®€CZ, Ad+1>0}.

PROOF: If applied to C¥ = M1 , Rockafellar’s duality theorem [4] states that

min{/y (M) — ho(M) : M € ML(S)} = sup{h3(¢) — hi(¢): ¢ € C,(S)} (4.7

whenever the set {o: h}(¢) > —oc} contains a finite continuity point of h}. But this con-
dition is satisfied since h} is continuous and finite on whole C, and h3(¢) is not identically
—o00 , and hence (4.7) holds true.
Substituting the explicit expressions for A} and hj from Lemmas 4.1 and 4.2 into (4.7}
] and using the fact that {A® : & € C2} is dense in {¢ : h3(¢) > —o0o} we obtain

U(t.7) = min{h, (M) — hy(M) : M € ML(S)}
= sup{®(t,z) — ™" - (t,2) - [|(A% + )7[ly : & € C2)

To conclude the proof it is sufficient to show that for every @ € C2 there exists a
®~ € C? such that A®~ +1 > 0 and ®~(¢,2) > ®(t,z) —a~! - A(t.x) - [|(4® + D)~ |-.
Choosc @~ := @ —a"?-4|[(4® + )" ||y Then by Lemma 1.1 —~A4 > o~ holds and
consequently, we have

AP~ +1=Ad+1—0o7' - (A2 + D)7 |4 - Ay 2> AD + 1+~ ||(A2 + D)7 |
=AP +1+4- sup [(AD+D)7(t,2',y")/(t',2")] 2 0.
(t',z',y')€S
The proof of the theorem is complete.

In a less compressed form Theorem 1 states that the weak value function ¥ is the upper
envelope of all € C2(E) satisfying the Hamilton-Jacobi inequality.

@.(t,2) + min { 2 eltor e, (62) 4 3o blty )69

—c(t.r,y)®(t,z) + l(t,;r,y)} > 0.
(4.8)
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Recall that the definition of C2 includes (T, z) = 0 whenever T < +oc.

The fact that A®, > A®, implies &, < P, justifies to call the functions ¢ € (-
satisfving (4.8) subsolutions of the Hamilton-Jacobi equation.

The results of the present paragraph remain valid under much more general assumptious
than those made in §2. In fact, we did not use either the finite dimensionality of the
state-space or the specific properties of diffusion processes. Besides Rockafellar’'s duality
theorem, our approach was based on the validity of Dynkin’s formula, but not even the
denseness of C2 was exploited. Since Dynkin’s formula is a special case of the “genera)
fundamental theorem of calculus” in semigroup theory, all results of the present paragrapl
can be generalized to the case, when the state and control spaces are locally compact
separable metric spaces and C? is substituted by a linear subset £ of C,(E). Of course,
this latter change affects the definition of M 4 and consequently the weak problem itself.
But still. the dual of this new “L-weak” problem will be the problem of finding the upper
envelope of all subsolutions in £ of the Hamilton-Jacobi-Bellman equation involving tlic
operator A. The coincidence of the primal and dual values remain preserved too.

5. EQUIVALENCE OF THE STRONG AND WEAK FORMULATIONS

We prove the equivalence under the assumption of a special approximation property of
the value function corresponding to smooth costs. In Section 6 we will show that under
the assumptions of the present paper this approximability is always true.

THEOREM 2. Let f € C%(S) denote an arbitrary smooth “running cost” and denote F
the corresponding (strong) value function.

Suppose that every such value function F can be approximated in the | ||4-norm by
a sequence of functions F'¢) each of which has first and second derivatives essentiallv
bounded in 4-norm and satisfies AF(®) + f > 0 a.e. as well as F(*)(T,z) = 0 whenever
T < oo. Then, for each (t,z) € E® and ! as in Section 2 the weak and strong formulations
are equivalent; their optimal value functions coincide.

Note that Theorem 2 assumes the approximability of value functions generated by
smooth costs and makes a statement about the more general control problem which in-
volves general continuous or (later) even only lower semicontinuous running cost .
PROOF: Assume that the statement of the theorem is false, there exists an initial state
(to,xo) such that T(tg,20) < ¥(to,z0). This means that there exists a measure M, ¢
M“'(to,xo)\Ms(m, o) which gives rise to a cost [ I dMj lower than v(to, o) the infimum
over all costs generated by controls u € U, i.e.

/IdMo<inf{/ldAl“:uEU}. (5.1)

This means that the w*-continuous linear functional [1dM on MJ(S) separates an
element M, € ,__M_“ from the w*convex-closure of the set M° = {M" :u € U}. In other
words M " is strictly larger than the closure of M. If this is so. then M, and the compact
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set M can also be separated by a functional [ f dM generated by a smooth f € ('5\S). .
More precisely. since smooth functions form a dense subset in C, there must exist an !
f € €7 such that
/fdx\fo < inf{/fd]\[“ MY e M®). (0.2

B A A~

Let us introduce the strong value function F corresponding to the running cost f

T
F(t.r):= inf{/fd]\[ M e _/\_/l_s(t,:r)}= i2{1E"’/ flt, 2y uy)dt. (5.3,
u t

Then, according to the assumptions of the theorem, for every € > 0 there exists an

F() such that the partial derivatives F,(E),Fz(f),Fz(flj are all defined a.e., are essentially ,
bounded and for every y € Y the inequality ]

AYFO(t, 2) + f(t,z,y) > 0 (5.4)

is satisfied for a.c. (t,z) € E and ||FY - F||y < e.

The generalized Dynkin’s formula (3.2) cannot directly be applied to (5.4) because F(¢)
is not smooth. it should first be approximated by Cf‘; functions. The details of this approx-

imution are prescuted in the next two lemmas. Using them, the conclusion of the proof of
Theorem 2 will be straightforward.

LEMMA 5.1. For every 6 > 0 there exists an F(¢%) ¢ C:‘;(E) such that

IF® = FEO), <6,
§
[AF©D), < JAF®|, + 6, !
U
and AF®D 4 f>-6.9 on [6,T-6xR"xY. (5.5) ;

PROOF: First we ex end the definition of F(*) from [0, T] x R" to [-T.2T] x R" by \

F(‘)(—S,Z‘) = F(‘)(O,.T) s € [O,T],:l' e R" ]

F(T+s,z):= FT —s,z2) (5.0)
and the functious a.b.c, and f from [0,T)] x R” x Y to [-T,2T] x R" x 1" by rcflection X
over 0 and T: i.c. a(—s,7,y) = a(s,r,y) and a(T +s,7,y) = a(T —s,z,y)if s € [0,T),x € b,

R",y € Y, anud similarly for b,c and f. » A
Note that

¢

A'FO(=s.2) = —~F(s,2) + AVF)(s,2) se[0,ThrcR,yeY \
AYFENT « e 0) = 2F M (s.7) = AYFENT = s,2). (5.7)
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]
. t
> Moreover. because of the Lipschitz continuity of F(¢) we have )
i
' sup |AF'®) /4| = K ]
; {-T,2TIxR"xY
K
i with some finite number Ii'. (We reserve the notation || - ||, for sup over [0,T] x R x 1")
X Let p.(t,z) be a non-negative symmetric C*-mollifier (partition of unity) with )
R [ [ pr(0,€)dods =1 and pr(0,€) = 0if [o| + [¢ > . If ¢ € C({—T,27T] x R") we define 3
¢oxpron[0,T] x R" by
(6% p)(t2) = //w + 0,24 6)pr(0,€)dode if 0<r<T ‘
\ From the second relation of (5.6) it follows that (F(®)xp,)(T,z) = 0, moreover F{*)p, is 4
\ infinitely often differentiable on [0, T]x R™ and |[[F®) % p,|[, < K. Consequently F'<'» ), € .
: C2(E) for every 0 < r < T. ‘
: Since by (5.4) AF) 4+ f > 0 holds almost everywhere on [0,T] x R™ x 1", it follows that
\
X s
(.4F(€))*p,<+f*pr20 on [PT—r}]xR"xY .
)
X We want to show that for every § > 0 there exists an r > 0 such that F(&:8) ;= F(&) 4 5
5 satisfies (5.5). Clearly, we can assume r < 6, ie. [6,T — 6] C [r,T — r] and thus it is \
o sufficient to show that !
4 IAF©) s p, = ACF© %)y =0 and f # pr — flly = 0. ;
3 We have 3
:, 3
1
; AF®) % p, — A(F % p)](t,
N 1 e v
: =5 [ AL sttt oe 4 60— astz ] B2yt + 0240
» t,)= ]
:: +Z[b,(t+a,r+§,y)—b,(t,:r,y)]Fif)(t+0,:r+§) :
¢ < =1 )
)
g — et +o,0+&y) = c(t,2,9) [ FO(t + 0,7 + 6)}pr(0,€)d0d£ f
> < S anIFELL My + D b (MIFS y + &) F, (5.8)
i
: where @,;, b;. ¢ denote the moduli of continuity of the corresponding coefficients. Since the E
‘. cocfficients werc assumed to be uniformly continuous and the || - ||, —norms of F,(fij Ey! 3
and F) are finite by the assumption of the theorem. the right-hand side of the inequality '
n tends to zero as r — 0, proving the lemma. '
" !
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0 LEMMA 5.2.

K

" / ydM < (t; —ty) - 4y(t. 1) (9.9,
[t1,t2]xR" xY

)

:‘: holds true for every M € M" (t,z) and 0 <t; <t <T.

R)

:: PROOF: Denote x(s) := (t2—t1)— f; 1j1,,1,)(¢)do and let xx : [0, T) — R! be a monotonely

R decreasing sequence of functions which are continuously differentiable in (0, T), for whicl .

N xk(T) = 0 and such that xz \, x and x} / ~1j, ;) = X" as k — oc.

;: For M € M™"(t,z) C M4(t,z). the generalized Dynkin’s formula (3.2) can be applicd

p to the functions ®x(0,€) := xk(0) - 7(0, ). Using relation

)

" Ak =7 - Axk +xk Ay =7 Xk =¥ ¢ Xk + Xk - A7

:i and the fact that ¢ v, —A%, and M are non-negative, we obtain

u

e (tz —t1) - 9(t,z) 2 9(t, @) - x(t) = lim ¥(2, ) xx(t) .

K = kli‘ngo ®i(t,z) = kll.n;o/ —A®; dM

L)

o

,’:‘ = klin;o ~Xk - ydM + /Xkc-'de\I + /Xk(—A'))dAI

Yy -

kS

' > kli_’ngo‘/ Xk -ydM = /1[“’,2] -y dM

g

Y '

proving the lemma.

CONCLUSION OT THE PROOF OF THEOREM 2: :
Since Fle:f) ¢ C2(E)and M, € M © Mu(t, z), we can apply the generalized Dynkin's "

-
IR ar—aar—

p formula and obtain by (5.5) and (5.9)

"

o

P FEO(t 7)) = — / AF©9 dr1,

; [0, TIxR"xY

R < / fdMy + 6 - / v dAL, 2
:’ (6, T—6]xR" xY [6,T—6]xR" xY d
)

’ +jareoy, . [ Y dMs. '
1 ([0,6]U[T—56,T]) xR" xY '
Ei Since My € M" C M>T | we have 0 < fs'yd.\lo < T. From Lemma 5.2 it follows that

¥ the integral in the last term is not greater than 26-4(¢,z) = 26 -a-I" and since by Lemma -
" 5.1 |JAF(D|, < ||AF®)|., + é , we have X
4 Flebt 7)< /fdJWo+6~2(1+aHAF(‘)H,)-I‘ (5.10) \
! s :
; 14 :
» )
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Choosing first ¢ then & sufficiently small, from ||[F — F%%|| < ¢ + é and relation (5.10} it
follows .

Yy

s
-
3

F(t.z)= inf{/fdM“ LMY€ __MS} < /fdMo

‘-‘l“-"

in contradiction to the choice (5.2) of f as separating functional. This proves the equiva-
lence of the strong and weak formulations.

&

y Remark. Assumptions on the derivatives of F{¢) were only needed to obtain estimatc

“ (5.8). Note that since F() is locally Lipschitzian, its first derivatives exist a.e. and are

¥ locally bounded. Tlis fact alone is sufficient to prove the equivalence of the strong and

A weak problems provided the diffusion coefficients a,; do not depend on t and r. In fact. )

in this case the terms [a,'j(t +ozx+€y)— a,-j(t,a:,y)] are zero and no assumptions on
the second derivatives Fy ., are needed, shortcutting the approximation by F) and the
entire Section 6.

COROLLARY 1. Suppose that [ is of at most linear growth, i.e. |[(t,z,y)] < ro+r1|z|+rat.

U

'y

Y

:: If the processes are deterministic (a;; = 0) or the diffusion coefficients are independent of
s time and space, then the strong and weak problems are equivalent.

N PROOF: If I is of linear growth, then 4 can be chosen to be ¥- (1 + |r| + ) with 7 >

max(rg,r1,72). Consequently f will be uniformly Lipschitzian and so will be F'. Moreover
F can be represcnted as the sum of a concave and of a smooth function, hence the first

‘. and second partial derivatives of F exist a.e. and the first partials are uniformly bounded. '
The corollary theu follows from the previous remark.

S The measure M; introduced in the proof of Theorem 2 could not be in the w* convex

) closure of M%(to.7¢). The argument there in fact proves:

COROLLARY 2. M (¢ 1) is the w* convex closure of M>(t, z).

O

::‘ 6. A SOBOLEV APPROXIMATION OF THE VALUE FUNCTION
p To complete the proof of the equivalence of the strong and weak problems it remains
to show that the value function generated by a smooth running cost can be approximated

;:, by Wl function the way required by the assumptions of Theorem 2. This kind of ap-
‘.:: . proximability of the value function which does not use any non-degeneracy assumptions
:l‘: is also of independent interest in other branches of control theory unrelated to the strong :
W and weak formulations. This section is devoted to the proof of the result.

;:. THEOREM 3. Let f € C2%(S) and let F be the corresponding value function defined by
::‘. (5.3). Then for every ¢ > 0 there exists a function F'®) € C,(E) with the following
% properties

g (a) |[F ~ FO, <&

' (b) The partial derivatives F,(E),Fif),Fif?,j exist almost everywhere for everv 1 <i.j <
"y n and satisfying |||F®|||, < K(¢) with some constant K (e) where
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(c) AYF)(t.2) + f(t.z) > 0 for almost every (t,z) € E, for every y, and F)(T, 1) =
whenever T < oc.

We denote the weighted Sobolev space of all functions satisfying (b) by W22 .

The idea of the proof is to extend the control set of the original problem by one additional
“smoothing control” giving rise to an n-dimensional Brownian motion. The value function
of the extended problem will then have the required smoothness properties and by charging
a sufficiently high penalty for the “smoothing” its domain of application can be kept small
and this way the smoothed value function can be forced to remain close to the original
one.

To be more precise, let us introduce one more additional control 7 so that the extended
control set will be Y U{n}. The process associated with n will be the standard n-dimensional
Brownian motion discounted at the lowest possible rate ¢o = infy . 4 ¢(¢, z,y) so that we
have

-C
e~ ¢o*

E} ®(aly,) = Zre)7E

Jat+soep[-E5 7 de = 0 - 2r0m)

The infinitesiimal operator corresponding to the exponentially killed Brownian motion is

A"® = %A@ —co®

where A denotes the Laplacian. Recall that in Lemma 2.1 inequality (2.2) holds not only
for the family of operators {AY}, ey but with possibly different numbers a and & also for
the extended family {AY},eyu(y)- In particular we have 0 < ay < —A"y.

During the period of time when the new control 7 is applied we charge the running cost

fls,z,n):=L-(=A")(s,2) = L- (co(s,2) — %Av(s,x))

with some constant L to be determined later. For simplicity we only allow 7 to be applied
during at most one non-random interval of time. In other words, the extended set U, of
admissible controls will be the set of all functions of the form

(w.9) n ift; <s <ty
v(w,s) =
“ u(w,s) otherwise

with all possible choices of 0 < #; < t, < T and u € U. Note that because of the possibility
of killing, the processes may die before t; or t,.

The value function of the extended problem can then be written as

16
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- ——a -
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T
FI'(t,.T):z i&fl E,‘;,/ [f(s,:r:,v,)ly(vs)—{-L-(—A"‘))(s,:rs)l{,,}(ls) ¢
v t

K
l. — .
K t<11<12<T / fls,ag,us)ds
iy ueld ™
J 3]
+ E] . [ L-(—=A")(s,27)ds + F(tg,af,z)]}
» t
¥
A . t '
;" = tSnlgfzSTE‘u,f{ ¢ f(s a5, us)ds + (512—‘1 * F) (tl"T;‘l) Y
" ueld
K + L (v~ Bi,-1, *-7)(t1,x;‘1)}. (6.1
l;‘é
h Now we show that setting the penalty L high will keep the optimal cost FL close to F.
lr
::: PROPOSITION 6.1. For every € > 0 there exists an 0 < L, < oc such that ||[F — FLe||, < ¢
"

Proor: FL < F i« trivial since &7 is the value functional of the extended control problem
Y which contains the original problem embedded, as t; = t; is permitted.
4 To show F — FL¢ < ¢ .4 observe that since F/v is bounded and uniformly continuous
5 ) there exists a t, such the ||F/y — Bn * (F/v)|| £ €/2 for all 0 £ h < t,. With this ¢, let
" us choose L, := 3| f|ly/(c - te). Now let us consider an arbitrary (¢,2) € E. Since Fl« is
’ the pointwise infimum in (6.1), we can find an £/2-optimal triple z, 0 <{; <{;i.e. such
L that
3
)
)
D — _ 71 _ 3 t2
’.‘. F(t.x):= Etu,r{/ f(Zq.ug) + (Bh *F)(t )+L Etx 2, /: (_‘4']’7)(11‘3)(]5}

t ty

; < Fh(t.2) + 2 - 9(t,2)
1/ b
" We use the notation ¥, = z¥ and b = t, — ;. Keep in mind that although ,%;.%; t

do depend on (t,z). the numbers t, and L, were chosen before (t,z) was picked, hence
" estimates involving only t, and L, will hold for every (t,z) € E.
v With the quantities just defined we can write
8
) »

F(t.x) = Fle(t,2) = [F(t,7) = F(t,2)] + [F(t.2) = Fle(t.2)]

™ — €
R < [F(t2) = F(t,2)] +9(t:2) - 5 (6:2)
A —
bl and it remains to show that F(t.r) — F(t,r) < ~(t,z)- 5. "
' We increcase the value if we fix @ for the initial interval [£,7}) and allow minimization '
. only after £;.
v" h
o
.E‘ 17 t
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Fit.x)=F tr)<E / fls.7,. 4 )ds+F(t-1,f;1)}—?(1,:r)
=EL{([F-8u+F] - J=Le-[y=Bn#1])(F2a) ). (63 S

The expression in the first bracket under the expectation sign normalized by 4 can be
estimated at an arbitrary (t!,z!) € E as

'.
by
1 F F F  BxF -
F t,, ! _ * F t', ] _ . - t', ] + el t’. ! r
et - e e = (F-se D (0 D200y
F F B * ~(t', ') -
<l —=B8+«=l+lIF)s 11—~ —m—=

1Z-s (JH IFll, ( e ,
Consequently if we divide the whole expression under the expectation in (6.3) by 4 we .
obtain for it »
5:
4! n . 1 F F L ! ! :
)«(fsrr)-—m'([ — BrxF] — e'[7_ﬂh*7])(taz) :
F F ﬂh * 7(t'3x') y
S L 4 TP O L) R
H ~ h ~ ( ” ”'7) ( ‘Y(t',.'l") ( ) _'
Now there are two possibilities: either h <t, or h > t,. If h < t, then by the definition '

of t, we have ||F/~ — B * (F/4)|| < €/2. Since L > ||flly/a = ||F]|4 and 4 > By * 7,
the last term is non-negative; we may subtract it and we get x(t',z') < /2 for arbitrary {

(#',2") € E

On the other hand if A > t,, then 1 — e~®* > 1 — e thus by Corollary 3 to Lemma \
2.1 and the choice of L, we have ::
Bn *y(t' ') 2|l £l 2| £l 'E:
e~ FpRY (1o 2 RS 2 I . (1—¢0h)y> 200 > 3
(L, NELD <1 NTED) = a(l — e—ot) (1 € ) <74 = 2|l F|l5. - E:
o
byt

Since both F/~ and 8, * (F/~) are bounded by ||F||.. from (6.4) we find that ) (t'.2) < .
0 <e/2for every (t'.2') € E. e
Substituting this result back in (6.3) we find by Corollary 3 toc Lemma 2.1 that A

€ .
F(t.x)~ F(t.2) < El ;y(t1,74,) - x(t1.7,) < EE;‘,n(tI,f,,) < = - 4(t, 7). 2

Lo ™

This together with (6.2) gives F— Fl¢ < .~ which completes the proof of the proposition. e
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It is well-known (cf. e.g. [2], Th. 4.2) that under the conditions of Theorem 3 the value
function FL permits the decomposition FL = FL4FL where FL € C, is smootl. its partiu]
derivatives .Fﬁ:,L.f,l; ,f}. ;, belong to C while FLe C, is concave in r and monotonc in t.
In fact, for every control J* € C'?, and the infimum of continuously parameterized family of
C.ﬁ;', functions has the above decomposition property. For such functions the generalization

of Alexandrov's theorem [1] holds true; for almost every (¢,z) the derivatives Ft, FL, F/. z
exist and satisfy

Fit+o,2+¢€)=Fi(t,2)+ Fl(t,2) -0+ Y FL(t,2)&
+ 3N FE_(t,2)6E5 + o(jt + 1€17). (6.5

It is easy to sce that FT satisfies the Hamilton-Jacobi-Bellman inequality of the exteuded
problem almost everywhere. In fact, the next proposition is only a slight modification of
known results (cf. [2]. [3]) which we prove here only because the easy proof makes our
exposition self-contained.

PROPOSITION 6.2. For everv y € Y U {n}

AYFE(t o) + f(t,2,9) - 1y(y) + L+ (= A*7)(t,2)1a) () 2 0 (6.6)
for almost every (t,z) € E.

Proor: Suppose there exists a y € Yp and a (to,70) € E from the non-exceptional sct
such that

AY FL(to, 20) + f(to,z0,90) € —6 < 0.

Then. by the continuity of the underlying processes, there exists an s, > 0 such that for
all s < s¢

571 B8 FE(to + 5.7,) = Flto,20)] + f(to, 70, 30) < —6/2 < 0.
Let ug € U, be a §/3-optimal control for the initial state (to + so,£) and define

0 yo Mtg<t<to+s
(L‘"\t) = ) .
ug ift >t +sand Teo4s(w) =¢

Then this control is again in I{, and will yield the cost

E:‘oo,z‘o/ f(S,I,,UQ(S)) ds S f(thIanO) So + Eto IO{FL(tO + S,It°+,°) +6/3}
t
SF(to,Io)—5/6<0

in contradiction to the defiuition of F* as the infimum over all v € U,. The proof for
Yo = n i1s the same.
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{ CONCLUSION O THE. PROOF OF THLOREM 3:

' Let us choose F(¢) := FL¢ according to Proposition 6.1. Then we have [F—F'', < 2.
The derivatives F,(f),Fif),FI(f,)r, exist almost everywhere by Alexandrov’s thcorem and
Proposition 6.2 shows that the Hamilton-Jacobi inequality holds true for every y € 17 aud
for almost every (t.7) € E. The smooth component F(¢) and its derivatives arc in (-, by
‘ Krylov's cited result ([2], Th. 4.2). R

! It remains to show that the derivatives of the concave component F(¢) are essentinlly
’ bounded by K(e¢) - ~.

Consider the first derivative in an arbitrary direction of the (¢, z)-space. By the con-
cavity of F'<) this directional derivative is monotone along each line parallel to the choscn
direction. Suppose that this (one-dimensional) derivative function exceeds I . 4 for every
L', Then by its monotonicity follows that neither can its integral function be bounded by
L1 - ~. But this contradicts F{©) € C, which follows from Proposition 6.1. Hence there
must be a K2(¢) such that lf}(')(t, )|+, |f‘£f)(t, z)| < Ky(e)y(t,z) almost everywhere.

As for the sccond derivatives, f’if),) (t,z) £ K3(e) follows from the concavity of F®), To
show lFﬁfl,l < K'(€) - 4 consider inequality (6.6) of Proposition 6.2 for y = n. This claim:
that

1
F7 4+ SAFO —FO > L, A" 2L, 5~

where the last inequality followi from the right-hand side of (2.2). Using the estimates
already obtained for F(¢), F‘(t), Fx(f?,j we get

. ‘ . 1 o~
AFO(.2) 2 ~2(caFOYy + 1Flly + 5 3 [ Fre, Iy + L) -2 (t,2)
i)=1
= ~Ky(e)vy(t, z).

This lower bfu?d for the sum 3 f‘éfl, /7 together with the upper bound for the individual
€ . ~

sumr.ne?nds F,(“,). obtained from the concavity of F(¢) implies ”Fz(f),, llv < K(e) for every

1 <7.7 £n. This completes the proof of Theorem 3.

7. SEMI-CONTINUOUS COSTS

In thfz previous paragraphs, in particular in §3 and §4, we assumed the running cost to
be continuous ! € C,,. Now we are going to remove this assumption and allow ! to be lower

semi-.continuous and of growth less than 4. More precisely we denote by LC., the set of al
functions ! satisfving ) ! |

(i? l is lower semi-continuous
(U) SuP(¢,yyes (& w1/ 4(€) < o0
(iii) lim supig—o (& y)/v(€) = 0.
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9
N Such functions can be represented as upper envelopes of continuous functions I = sup{f :

" f € Cy, f <1} or even as limits of non-decreasing sequences of C, functions. )
" The aim of the present paragraph is to show that all results proved for continuous / f
" in the preceding paragraphs remain true for control problems with lower semi-continio-
:E cost functions [ E.LC.,. The key‘ tool .in approximating lower semi-continuous cost~ . f
i: continuous ones will be the following min-max type argument. :
,: N ProrosiTioN 7.1. Suppose l € LC, and let K denote an arbitrary w*-compact subsct of

M1(S). Then

'Y

‘. . —_ _ . -~ ¢
) mf,‘/ldp-mf sup /fdp— sup 1nf/fdp. (7.1

' nex weK <1, sec, j<tfec, nek )
PROOF: Note first. that every ! € LC, defines a convex, lower w*-semi-continuous funec-
tional on .M . hence all infima in (7.1) are attained for some elements of the w”-compic:
[} -

‘ set K. ]

: The monotonc convergence theorem and the obvious inequality inf sup > supinf yield ’

X Iy := inf /Id;l = inf su /fd[l >  sup inf_/fdy.

_ WEN HEK f_<_l,fIéC-, FSlLfeC, HEN

¥y

] h

Y Let uf denote the measure, for which [ fduf = inf,ex [ f du. To prove the proposition /

:' it is sufficient to show the existence of a y* € K for which

P

| sup [ fau! 2 f1au (7.2)

. f<t,fec, h

:’l holds true. )

p Let fi denote a monotone non-decreasing sequence of continuous functions with f; € '

o C,(S5)and fy / lask — oc. Since X is sequentially compact, one can select a subsequence

. k; such that u; := u/* converge weakly* to a limit u* € K as i — oc.

i . .

R Let us consider the following array of reals '

1(i,7) :=/fkldpj t,j=1.2....

’ If i/ <ithen I(i'.7) < I(i,7) because the sequence fj, is monotone non-decreasing. The

N measure y; is by definition minimizing f fr, du and as fi, < I, we have )

t [

L I(i,i) = /fk.- du; = ;g{,/fk.- dp < ‘}relfC/ldu = Io. !

4 Conscquently all elements I(7, j) with ¢ < j (i.e. above the diagonal) are uniformly bounded '

: by I. From the monotonicity of the sequence fi,; it follows that the diagonal sequence )
I(i,1) is monotone non-decreasing and so I := lim;_o I(7.7) < I exists. ‘

Since f;, is continuous and g* = w*-lim g, it follows that the sequence I(7.j) converges '

for any fixed 7 to a limit I(i.oc) = [ fx, dy* as j — oc. From I(i,j) < I(j,j) for i < j it

. follows \

U t

K '
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)

q I(t.oc) = lim I(2,7) < lim I(j.j) = I«.

:. ]—x J—o<

a Recall that the sequence fi was chosen such a way that fi  I. Consequently the monotone
e convergence theorem yields

t

L™

)

A Hio) = [fdu 7 [1du st = swp [ rau.

, f<ifec,

In other words p* satisfies (7.2) and the proof is complete.

3,

1

K THEOREM 4. Suppose | € LC,,. Then the (strong) value function of the stochastic con-

L trol problem formulated in §§1-2 is the upper envelope of the smooth subsolutions of the
Hamilton-Jacobi-Bellman equation, 1.e.

": ‘I/(t,1)=sup{<1>(t,x) P e Cs,A<I>+120}. (7.3)
"
Y PROOF: It was shown in §§5-6 that MW is the closed convex hull of M. Since J1dM is
g a convex, lower w*-semi-continuous functional on A whenever [ € LC, it follows that its
j %

infimum over MY is the same as its minimum attained in M". Consequently the strong
and weak value functions coincide even if { is only lower semi-continuous / € LC,,.

x We know from Theorem 1 that the value function permits representation (7.3) if [ is
continuous (I € ('.). Proposition 7.1 can be applied tol € LC, and X = M"Y as MY
a w*-compact set and we obtain

'~. Yit.r) = inf /ld]\f = sup inf /fdx\[

. MeM™W (t,z) f<i,fec, MemMW

0 = sup sup{®(t,z):® € CI(E),Ad + f > 0]}

d f<i,fec,

’ Ssup{é(t,z):<I>EC'.2,,A<I’+IZO}.

g The opposite inequality is immediate, since for every ® € C?, with A® +1 > 0 and for
: every M e M" = .\4: N M 4 Dynkin’s formula yields

]

'ﬁ

e &(t,z) = /(—A@) dM < /ld!\!.

: Taking infimum over M € M" gives &(t,z) < inf pre pw J1dM = ¥(t,z) for every
\ ®ec C.3 with A® + | > 0 which completes the proof of the Theorem.

“‘
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8. INCLUSION OF TERMINAL PENALTIES

In this final paragraph we explain how to extend the main results of the paper to

I graj p paj
problems where the cost function includes also an additional terminal penalty, i.e. wherc
the objective i¢ to minimize the functional

T
Ju(t,x)=E,“,z{/ l(t,:rg,mt)dt-i-L(:cT)} (T < ) (8.1)

over all controls u € I{. Here both | and L are lower semi-continuous functions of growth
less than 4 at infinity. This will extend the scope of the results to include problems like the
maximization of the hitting probability of a closed target set or the fixed end-point problem
of deterministic control theory which were beyond the reaches of the other approaches to
the Hamilton-Jacobi theory.

The key to the extension is to consider a more elaborate state space S which is composecd
of Sy, the compactification of the “interior” of the state-space, and of S5, the compactified
“terminal boundary,” as two separate components. More precisely let S denote the com-
pact metric space which consists of the two isolated subsets Sp := E x Y and S5 :== R .
Note that S is the same space which was denoted by § in §2.

Every continuous function @ € C,(S) will then correspond to the pair @is, € C,(S,)
and ®|s, € C,(Ss) where C,(Sp) is Cy(S) of §2 and

Cy(Sp) :=={d € C(R"): sup |¢(2)l/+(T,z) < o0

and
Jim_|o(@)|/2(T,2) = 0).

LC.,(S‘) will denote the set of all lower semi-continuous functions on S, i.e. those which can
be represented as upper envelopes of families of C.,(g ) functions. The dual space to C'-,(§ )
will be the set M;(g) of all pairs of measures M = (M, Mj) with My € M1(Sy), M5 €
MZ(Ss) provided with the norm ||M||y = [ (¥, 2')|Mo(dt',dz’,dy)| + [ v(T,z)|Ms(dz)|.
The set of all non-negative measures Af € Ml(g) with ||M]|, < T < 4oc will be denoted
by MLT(S).

Observe that the function

I*( )._{I(T,é"y) ifa=(7',£,y)€50
T\ Lix)  fo=zeS,

1s in LC.,(g). The measure M ¥ defined on the Borel sets B of S by

MY(B) of (2.1) if B C S,

M =
M*(B) { P! (%€ B) fBCS;

isin .M"'H’T(g) - ,\/l;’t(g). With this notation the (strong) optimal control problem with
both running and terminal costs can be formulated as follows

23
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Minimize / [dAY overall wu€U. (82,

Let Cs(f) denote the set of all twice continuously differentiable functions @ defined o:.
[0,T) x R™ for which &, ®,, .., ®:,,, are all in C,(E)(4,5j = 1,2,... ,n). The diffcrcuce
to the definition of C2(E) in §2 is that now we do not require functions to vanish ou the
exit boundary [T} x R™ for T < oc. Recall that for every ® € C2(E) Dykin’s formula

T
E!.®(T,z7) - ®(t,z) = E/, / A¥* ®(s,x,)ds (8.3)
0

holds true. If we introduce the operator 4 : C?,(E) — C.,(S" ) by
. AY(t, if o = (¢, 7, S
A@(a):{ (t,z) if o (t,z,y) € So
-®(T,z) fo=z€S,
then with the above notation Dynkin’s formula can be written in the more compact form

~®(t,7) =/~A<I>d57“. (8.4)
S

The weak problem corresponding to (8.2) can be formulated as
Alinimize /idﬁ over all M € MTIHT(8) N M ;(t, )

with M 3(t.2):= {M € ML(S) : for which (8.4) holds V& € C%(E)}.
All the expositions of §§3-7 can be repeated word by word for this extended notation
and we obtain

THEOREM $. The dual to the problem (8.2) is to find the supremum of all smooth subso-
lutions of the Hamilton-Jacobi-Bellman equation, and we have

T
T(t.o) = 3255,{,{[ I(s,a‘g.us)ds+L(a'T)}

= sup{@(t,z) overall ¢ € C?,(E') satisfying
;23,‘ AVP(r, )+ (7, €,y) 20 if 0<7<T,E€R"

and ®(T,§) < L(E) €€R"}).
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